Strong Duality in Robust Semi - Definite Linear Programming under Data Uncertainty ∗
نویسنده
چکیده
This paper develops the deterministic approach to duality for semi-definite linear programming problems in the face of data uncertainty. We establish strong duality between the robust counterpart of an uncertain semi-definite linear programming model problem and the optimistic counterpart of its uncertain dual. We prove that strong duality between the deterministic counterparts holds under a characteristic cone condition. We also show that the characteristic cone condition is also necessary for the validity of strong duality for every linear objective function of the original model problem. In addition, we derive that a robust Slater condition alone ensures strong duality for uncertain semi-definite linear programs with affinely parameterized data. Finally, we present strong duality with computationally easily tractable dual programs for two classes of uncertainties: the scenario uncertainty and the spectral norm uncertainty.
منابع مشابه
Robust linear semi-infinite programming duality under uncertainty
In this paper, we propose a duality theory for semi-infinite linear programming problems under uncertainty in the constraint functions, the objective function, or both, within the framework of robust optimization. We present robust duality by establishing strong duality between the robust counterpart of an uncertain semi-infinite linear program and the optimistic counterpart of its uncertain La...
متن کاملTrust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization
The trust-region problem, which minimizes a nonconvex quadratic function over a ball, is a key subproblem in trust-region methods for solving nonlinear optimization problems. It enjoys many attractive properties such as exact semidefinite linear programming relaxation (SDP-relaxation) and strong duality. Unfortunately, such properties do not, in general, hold for an extended trust-region proble...
متن کاملRobust Duality for Generalized Convex Programming Problems under Data Uncertainty∗
In this paper we present a robust duality theory for generalized convex programming problems in the face of data uncertainty within the framework of robust optimization. We establish robust strong duality for an uncertain nonlinear programming primal problem and its uncertain Lagrangian dual by showing strong duality between the deterministic counterparts: robust counterpart of the primal model...
متن کاملSome Duality Results in Grey Linear Programming Problem
Different approaches are presented to address the uncertainty of data and appropriate description of uncertain parameters of linear programming models. One of them is to use the grey systems theory in modeling such problem. Especially, recently, grey linear programming has attracted many researchers. In this paper, a kind of linear programming with grey coefficients is discussed. Introducing th...
متن کاملRobust Conjugate Duality for Convex Optimization under Uncertainty with Application to Data Classification∗
In this paper we present a robust conjugate duality theory for convex programming problems in the face of data uncertainty within the framework of robust optimization, extending the powerful conjugate duality technique. We first establish robust strong duality between an uncertain primal parameterized convex programming model problem and its uncertain conjugate dual by proving strong duality be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012